X
تبلیغات
نانو الکترونیک
نانو الکترونیک
این وبلاگ یک وبلاگ دانشجویی ای می باشد و از دانشجویان دعوت به همکاری به عمل می آید
شنبه بیست و یکم اردیبهشت 1387
نانو لوله های کربنی ...  
نانو تیوپ های کربنی
  نانولوله هاي كربني؛ از سنتزتا كاربرد 

                      

 اگر قبول كنيم كه روش‌هاي توليد به كمك فناوري نانو به دوران طلايي خود رسيده است بايد نانولوله‌هاي كربني را بچه‌هاي طلايي اين دوران به شمار آوريم. خواص منحصر به فرد (مكانيكي- الكترونيكي- شيميايي- مغناطيسي- ) اين مواد رويايي موجب شده است كه قابليت‌هاي كاربردي زيادي براي آن ها به وجود آيد. پيش‌بيني يك بازار 12 ميليارد دلاري در مدت 5 سال ( 2002تا 2007) حاكي از آن است نانولوله‌هاي كربني تأثير بيشتري از ترانزيستور در جامعه امروزي خواهند داشت. 

 نانولوله‌ هاي كربني‌ كه از صفحات كربن به ضخامت يك اتم و به شكل استوانه‌اي توخالي ساخته شده است در سال 1991 توسط ساميو ايجيما (از شركت NEC ژاپن) كشف شد. خواص ويژه و منحصر به

فرد آن ازجمله مدول يانگ بالا و استحكام كششي خوب از يك طرف و طبيعت كربني بودن نانولوله‌ها (به خاطر اين كه كربن ماده‌اي است كم وزن، بسيار پايدار و ساده جهت انجام فرايندها كه نسبت به فلزات براي توليد ارزان‌تر مي‌باشد) باعث شده که در دهه گذشته شاهد تحقيقات مهمي در كارايي و پرباري روش‌هاي رشد نانولوله‌ها باشيم. كارهاي نظري و عملي زيادي نيز بر روي ساختار اتمي و ساختارهاي الكتروني نانولوله متمركز شده است. كوشش‌هاي گسترده‌اي نيز براي رسيدگي به خواص مكانيكي شامل مدول يانگ و استحكام كششي و ساز وکار عيوب و اثر تغيير شكل نانولوله‌ها بر خواص الكتريكي صورت گرفته است.مي توان گفت اين علاقه ويژه به نانولوله‌ها از ساختار و ويژگي‌هاي بي‌نظير آن ها سرچشمه مي‌گيرد.

ويژگي‌هاي نانولوله هاي کربني

 انواع نانولوله هاي‌ کربني

روش‌هاي توليد نانو لوله هاي کربني

كاربردهاي نانولوله‌هاي کربني

چالش هاي فراوريويژگي‌هاي نانولوله هاي کربني

۱-۱) اندازه بسيار كوچك (قطر كوچكتر از 4/0 نانومتر)

1-2) حالت رسانا و نيمه‌رسانايي آن ها بر حسب شكل هندسي ‌شاننانولوله‌ها بر حسب نحوه رول شدن صفحات گرافيتي سازندۀ‌شان به صورت رسانا يا نيمه‌رسانا در مي‌آيند. به عبارت ديگر از آنجا كه نانولوله‌ها در سطح مولكولي همچون يك باريكه سيمي در هم تنيده به نظر مي‌رسند اتم‌هاي كربن در قالب شش وجهي به يكديگر متصل مي‌شوند و اين الگوهاي شش وجهي ديواره‌هاي استوانه‌اي را تشكيل مي‌دهند كه اندازه آن تنها چند نانومتر مي‌باشد. زاويه پيچش نوعي نانولوله، كه به صورت زاويه بين محور الگوي شش وجهي آن و محور لوله تعريف مي‌شود، رسانا يا نارسانا بودن را تعيين مي‌كند. تحقيقات دي گري نيز نشان داده‌اند كه تغيير شعاع نيز امكان بستن طول باند و عايق نمودن نانولوله فلزي را فراهم مي‌كند. پس مي‌توان گفت دوپارامتر اساسي که در اين بين نقش اساسي بازي مي‌كنند، يكي ساختار نانولوله و ديگري قطر و اندازه آن است. بررسي‌هاي ديگري نشان داده‌اند که خصوصيات الكتريكي نانولوله‌ها بسته به اينكه مولكول C60 در كجا قرار داده شود از يك هادي به يك نيمه‌هادي و يا يك عايق قابل تغيير مي‌باشد. از آنجايي كه نانولوله‌هاي كربني قادرند جريان الكتريسته را به وسيله انتقال بالستيك الكترون بدون اصطكاك از سطح خود عبور دهند- اين جريان صد برابر بيشتر از جرياني است كه از سيم مسي عبور مي‌كند- لذا نانولوله‌ها انتخاب ايده‌آلي براي بسياري از كاربردهاي ميكروالكترونيك مي‌باشند. 

 1-3) برخورداري از خاصيت منحصر به فرد ترابري پرتابه‌اي 

 1-4) قدرت رسانايي گرمايي خيلي بالا 

1-5) سطح جداره صاف يا قدرت تفكيك بالاسطح جداره صاف نانولوله‌ها باعث مي‌شود كه ميزان عبور گاز از درون آن ها به مراتب بيشتر از غشاهاي ميكروحفره‌اي معمولي كه در جداسازي گازها مورد استفاده قرار مي‌گيرند باشد. لذا مي‌توان گازهايي مانند هيدروژن و دي‌اكسيد كربن را با هدايت در نانولوله از هم جدا كرد. اين كه آيا نانولوله‌ها واقعاً مي‌توانند در خارج از آزمايشگاه نيز گازها را به طور انتخابي از خود عبور دهند يا نه باعث شده كه اميدهاي زيادي به توليد هيدروژن و نيتروژن از هوا باشد.

1-6) بروز خواص الكتريكي و مكانيكي منحصر به فرد در طول آن ها

1-7) مدول يانگ بالا 

1-8) حساس به تغييرات كوچك نيروهاي اعمال شده اعمال فشار بر يك نانولوله مي‌تواند ويژگي‌هاي الكتريكي آن را تغيير دهد كه بسته به نوع كشش يك نانولوله مي‌توان رسانايي آن را افزايش يا كاهش داد. اين امر به دليل تغيير ساختار كوانتومي الكترون‌ها صورت مي‌گيرد. لذا اين امكان به فيزيكدان ها داده مي‌شود كه ترانسفورماتور يا دستگاه‌هاي انتقال دهنده بر پايه نانولوله‌ها بسازند كه حساسيت زيادي به اعمال نيروهاي بسيار كوچك دارند. همچنين توانايي نانولوله‌ها در احساس تغييرات بسيار كوچك فشار و باز تبديل اين فشار به صورت يك علامت الكتريكي مي‌تواند در آينده امكان ساخت سوئيچ‌هاي نانولوله‌اي حساس به تغييرات بسيار كوچك فشار را به محققان بدهد.

1-9)گسيل و جذب نور نانولوله‌ها مي‌توانند نور مادون قرمز را جذب و دفع كنند.

 همچنين تزريق همزمان الكترون از يك سر و تزريق حفره از سر ديگر نانولوله‌كربني، موجب مي‌شود كه نوري با طول موج 5/1 ميكرومتر از نانولوله منتشر شود.

1-10)ضريب تحرك الكتريسيته بسيار بالانانولوله‌ها در دماي اتاق داراي بالاترين ضريب تحریک الكتريسته نسبت به هر ماده شناخته شده ديگري هستند. 

1-11)خاصيت مغناطيسي، ممان مغناطيسي بسيار بزرگ با قرار دادن يك نانولوله در زير لايه مغناطيسي يا با افزودن الكترون يا حفره به نانولوله مي‌توان خاصيت مغناطيسي در نانولوله ايجاد كرد .اين خاصيت باعث مي‌شود كه بتوان ساخت وسايلي را پيش‌بيني كرد كه در آن ها اتصالات مغناطيسي و الكتريكي از هم جدا شده‌اند. اتصال مغناطيسي را مي‌توان براي قطبي كردن مغناطيسي نانولوله‌ها- دستكاري در اسپين‌ها- به كار برد و از اتصال‌هاي غيرمغناطيسي براي الكترودهاي ولتاژ- جريان استفاده كرد. همچنين ممان مغناطيسي آن ها نيز قابل اندازه‌گيري است (1/0 مگنتون بور در هر اتم كربن).

 1-12) چگالي سطحي بسيار بالانانولوله‌ها داراي چگالي سطحي بسيار بالايي مي‌باشند كه باعث استحكام بالاي نانولوله مي‌شود. مي‌توان گفت اين خاصيت در اثر ريز بودن قابل توجه آن ها پديدار مي‌شود. 

1-13) قابليت ذخيره‌سازي در نانولوله‌ها هر سه اتم كربن قابليت ذخيره يك يون ليتيم را دارند در حالي كه در گرافيت هر شش اتم كربن توانايي ذخيره يك يون ليتيم را دارند. همچنين توانايي ذخيره انرژي در نانولوله‌ها چند برابر حجم الكترودهاي گرافيتي است. لذا محققان اميدوارند بتوانند هيدروژن زيادي را در نانولوله‌ها براي كاربردهاي انرژي و پيل‌هاي سوختي ذخيره كنند. 

1-14) داشتن خاصيت ابررسانايي نانولوله‌ها در دماي زير k ْ15 ابررسانا شده‌اند. شعاع اين نانولوله‌هاي ابررسانا فقط 4/0 نانومتر است. اين كشف در نانولوله‌هاي كربني نه تنها حيرت دانشمندان را به دنبال داشته بلكه قضايايي را كه حدود 40 سال پيش انتقال فاز را در سيستم‌هاي يك يا دو بعدي ممنوع مي‌دانستند، رد كرده است. همچنين دانشمندان دلايلي را ارائه كرده‌اند كه مي‌توان ابررسانايي دماي اتاق را در نانولوله‌هاي كربني يافت. آن ها بيش از 20 دليل ارائه كرده‌اند كه نانولوله‌هاي كربني از خود خواصي را نشان مي‌دهند كه بيانگر ابررسانايي دماي اتاق در آن هاست.

 1-15) توليد ولتاژبا عبور مايع از ميان كلاف‌هايي از نانولوله‌هاي كربني تك جداره، ولتاژ الكتريكي ايجاد مي‌شود. از اين تكنيك براي ساخت حسگرهاي جريان مايع براي تشخيص مقادير بسيار اندك مايعات و نيز براي ايجاد ولتاژ در كاربردهاي زيست پزشكي استفاده مي‌شود. همچنين نشان داده شده است كه مايعات با قدرت يوني بالا ولتاژ بيشتري توليد مي‌كنند.

 1-16) استحكام و مقاومت كششي بالاميزان افزايش نيروي گرمايي و مقاومت نانولوله‌ها با ريشه سوم جرم اتم‌ها و مولكول‌ها متناسب است. همچنين حرارت دادن موجب افزايش استحكام نانولوله شده و مقاومت كششي آن را شش برابر مي‌كند و هدايت آن نيز افزايش مي‌يابد. تحقيقات اخير نشان مي دهد كه در اثر برخورد اتم‌ها يا مولكول‌ها با نانولوله‌ كربني مقاومت الكتريكي آن تغيير مي‌كند.

انواع نانولوله هاي‌ کربني نانولوله‌ها به دو دسته تك جداره (SWNT) و چند جداره (MWNT) تقسيم مي‌شوند،‌ نانو لوله هاي تك جداره نيز بر حسب آرايش اتم‌هاي كربني مقطع لوله به سه دسته مهم دسته صندلي (Armchair) و كايرال( chiral ) كه داراي خاصيت فلزي هستند و زيگزاگ (Zigzag) كه خاصيت نيمه‌رسانايي دارد، تقسيم مي‌شوند.

(n,0)

 Zig-Zag 

(n,n)

 armchair

 chiral 

نانولوله‌هاي كربني تك جداره فقط از كربن و يك ساختارساده (ورقه‌اي از شش ضلعي‌هاي منظم) تشكيل شده‌اند. برخي پيش‌بيني‌ها حاكي از آن است كه تك جداره ها مي‌توانند رسانا يا نيمه‌رسانا باشند. اين هدايت الكتريكي بالا بستگي به هندسه دقيق اتم‌هاي كربن دارد. از آغاز كار روي تك جداره ها از آن ها به عنوان يك پديده تك بعدي نام برده مي‌شد تا اين كه اين نظريه مرحله به مرحله پيشرفت كرد. علت علاقه به اين نانولوله‌هاي تك جداره و تلاش براي جايگزين كردن آن ها در صنعت، بر اساس محاسبات نظري و تأثيرات آزمايشگاهي، بر خصوصيات عالي مكانيكي و رسانايي الكتريكي آن ها مانند فلزات مي‌باشد. البته توليد نانو لوله هاي تك جداره داراي هزينه بالايي است و توليد به همراه پايدار كردن خصوصيات آن ها در حين فراوري پليمر- نانولوله مشكل مي‌باشد. هر چند نانولوله‌هايي كه با استفاده از تكنيك لانگهوري- بلاجت كه شامل حركاتي افقي و عمودي شبيه نقاشي سنتي ژاپن مي‌باشد توليد شده‌اند، علاوه بر اين كه ثابت نگه داشته مي‌شوند- توسط ژلاتين و تشكيل نانوژل كربني- از لحاظ نوري نيز يكدست و همگن و از لحاظ ساختاري قابل كنترل مي‌باشند. بر عكس در دسترس بودن و تجاري بودن نانولوله‌هاي كربني چند جداره باعث شده كه پيشرفت‌هاي بيشتري در اين زمينه داشته باشيم تا حدي كه محصولاتي در آستانه تجاري‌شدن توليد شده است. به عنوان مثال از نانولوله‌هاي كربني چند جداره (جايگزين كربن بلك Carbon-black) در پودرهاي رنگ استفاده شده است.يكي از معايب نانولوله‌هاي چند جداره نسبت به تك جداره اين است كه استحكام‌دهي آن ها كمتر مي‌باشد زيرا پيوندهاي صفحات داخلي ضعيف مي‌باشند.

اما از آنجا كه‌ در حال حاضر كاربردهاي نانولوله‌ها در تقويت پليمرها باعث بهبود خواص گرمايي و الكتريكي مي‌شود تا بهبود خواص مكانيكي، كاربرد نانولوله‌هاي كربني چند جداره بسيار زياد مي‌باشد. ازطرفي تكنيك‌هاي موجود نيز براي توليد نانولوله‌هاي تك جداره به اندازه كافي بازدهي ندارد و خلوص لازم را نيز به همراه نمي آورد. تخليص اين مواد بسيار زحمت‌آور است و در نهايت ممكن است به ساختار نانولوله‌ صدمه نيز بزند.

روش‌هاي توليد نانو لوله هاي کربني

 بعد از آن كه در سال 1991 ايجيما اولين نانولوله‌ را دركربن دوده‌اي حاصل از تخليه قوس الكتريكي مشاهده كرد، محققان زيادي در جهت بسط و گسترش روش‌هاي رشد برآمده‌اند تا بتوانند مواد خالص‌تر با خواص كنترل شده مورد نظر توليد كنند. اما با آن كه روش‌هاي زيادي براي توليد نانولوله‌هاي كربني ارائه شده است،‌ سنتز آن ها در دماي اتاق تاكنون به صورت مشكلي لاينحل باقي مانده است. دانشمندان تاكنون اين مواد را در محدوده دمايي 200 تا700 درجه سانتيگراد با بازده كمتر از 70 درصد و حتي پس از چندين بار خالص‌سازي با درجهخلوص حداكثر 95 -70 درصد توليد كرده‌اند. در زير چند روش عمده در سنتز نانولوله‌ها مورد بحث اجمالي قرار مي‌گيرد. بدون شك بهينه سازي و كنترل اين روش‌ها مي‌تواند توان بالقوه نانولوله‌ها را پديدار نمايد. 

3-1) روش تخليه قوس

در اين روش اتم‌هاي كربن به وسيله عبور جريان بالا از دو قطب آندو كاتد در داخل پلاسماي گاز هليم داغ شده و بخار مي‌شوند.  

3-2) روش تابش ليزر

در اين روش پالس‌هاي قوي شده اشعه ليزر به طرف يك هدف كربني كه شامل 5 درصد اتمي نيكل و كبالت است پرتاب مي‌شوند. 

3-2) رسوب بخار شيميايي (CVD) اين روش شامل حرارت دادن مواد كاتاليزوري تا درجه حرارت هاي بالا در يك كوره لوله‌اي شكل و عبور يك گاز هيدروكربني در سراسر لوله براي يك مدت زمان معين مي‌باشد.

دو روش تخليه قوس و تابش ليزر براي زمان طولاني، روش‌هاي تقريباً كاملي براي توليد نانولوله‌هاي تك جداره بودند. اما از آنجايي كه هر دو روش مبتني بر بخار اتم‌هاي كربن درون محفظه كوچك هستند اولاً ميزان توليد نانولوله پايين مي‌باشد، ثانياً نانولوله‌هايي كه به صورت تبخيري تهيه مي‌شوند به صورت در هم پيچيده هستند؛در اين صورت براي خالص و تميز كردن آن ها با مشكل مواجه‌اند. روش رسوب بخار نيز با چالش‌هايي مواجه است چرا كه براي توليد نانولوله‌هاي كربني چند جداره چگالي بالايي از عيوب در ساختارشان به وجود مي‌آيد. اين عيوب به خاطر دماي پايين رشد مي‌باشد كه مقدار انرژي لازم براي بازپخت (آنيل) نانولوله‌ و تكميل ساختارش را فراهم نمي‌كند. همچنين اين روش منجر به مداري شامل هر نوع نانولوله‌هاي هادي و نيمه‌هادي مي‌شود. همچنين رشد نانولوله‌ها دلخواه بوده و قطر آن ها بزرگ است در حالي كه نانولوله‌هاي با قطر كمتر در كليد زني مناسب‌ترند. با اين وجود تمركز محققان بر روي روش رسوب‌دهي بخار است زيرا توليد انبوه در حد كيلوگرم را ميسر مي‌سازد و مي‌توان كنترل قابل قبولي بر مكانيزم رشد داشت.  كاربردهاي نانولوله‌هاي کربني وجود يك سري مختصات ويژه نانولوله‌هاي كربني، آن ها را به انتخاب ايده آلي براي بسياري از كاربردها تبديل كرده است. امروزه در روند تحقيق درباره نانولوله‌ها توجه و تعمق ويژه‌اي بر روي استفاده از آن ها در ساخت ابزارها متمركز شده است. اكثر پژوهشگراني كه در دانشگاه‌ها و آزمايشگاه‌هاي تحققاتي سرتاسر دنيا بر روي نانولوله‌ها كار مي‌كنند با خوش‌بيني پيش‌بيني مي‌كنند كه در آينده‌اي نزديك نانولوله‌ها كاربردهاي صنعتي وسيعي خواهند داشت.هم‌اكنون امكان ساخت ابزارهاي بسيار جالبي وجود دارد،‌ اما در خصوص موفقيت تجاري‌ آن ها، بايد در آينده قضاوت كرد. تقريباً تمام مقالات به طور ضمني به كاربرد نانولوله‌ها و بهره‌برداري تجاري از آن ها در آينده اشاره دارند. آينده كاربرد نانولوله‌ها در بخش الكترونيك روشن است؛ خواص الكتريكي و پايداري شيميايي بي بديل نانولوله‌ها به طور قاطع ما را به سمت استفاده از اين خواص سوق خواهد‌ داد. بنابراين در ادامه به شرح چند مورد از حوزه‌هاي مهم كاربرد نانولوله‌ها مي پردازيم. 

4-1) ترانزيستورها

نانولوله‌ها در آستانه كاربرد در ترانزيستورهاي سريع هستند، اما آن ها هنوز هم در اتصالات داخلي استفاده مي‌شوند. بسياري از طراحان دستگاه‌ها تمايل دارند به پيشرفت‌هايي دست يابند كه آن ها را به افزايش تعداد اتصالات داخلي دستگاه‌ها در فضاي كوچك تر، قادر نمايد. ترانزيستورهاي ساخته شده از نانولوله‌ها داراي آستانه مي‌باشند (يعني سيگنال بايد از يك حداقل توان برخوردار باشد تا ترانزيستور بتواند آن را آشكار كند) كه مي‌توانند سيگنال‌هاي الكتريكي زير آستانه را در شرايط اختلال الكتريكي يا نويزآشكار و رديابي نمايند. همچنين از آنجايي كه ضريب تحرك، شاخص حساسيت يك ترانزيستور براي كشف بار يا شناسايي مولكول مجاور مي‌باشد، لذا ضريب تحرك مشخص مي‌كند كه قطعه تا چه حد مي‌تواند خوب كار كند. ضريب تحرك تعيين مي‌كند كه بارها در يك قطعه چقدر سريع حركت مي‌كنند و اين نيز سرعت‌ نهايي يك ترانزيستور را تعيين مي‌نمايد.لذا اهميت استفاده از نانولوله‌ها و توليد ترانزيستورهاي نانولوله‌اي با داشتن ضريب تحرك برابر با 100 هزار سانتيمتر مربع بر ولت ثانيه در مقابل سيليكون با ضريب تحرك 1500 سانتيمتر مربع بر ولت ثانيه و اينديم آنتيمونيد (بالاترين ركورد بدست آمده تا به امروز) با ضريب تحرك 77 هزار سانتيمتر مربع بر ولت ثانيه بيش از پيش مشخص مي‌شود.  

4-2) حسگرها

حسگرها ابزارهايي هستند كه تحت شرايط خاص، از خود واكنش‌هاي پيش‌بيني شده و مورد انتظار نشان مي‌دهند. شايد دماسنج را بتوان جزء اولين حسگرهاي كه بشر ساخت به حساب آورد. با توجه به وجود آمدن وسايل الكترونيكي و تحولات عظيمي كه در چند دهه اخير و در خلال قرن بيستم به وقوع پيوسته است، امروزه نياز به ساخت حسگرهاي دقيق‌تر، كوچك تر و با قابليت‌هاي بيشتر احساس مي‌شود.حسگرهايي كه امروزه مورد استفاده قرار مي‌گيرند،‌ داراي حساسيت بالايي هستند به طوري كه به مقادير ناچيزي از هر گاز، گرما يا تشعشع حساسند. بالا بردن درجه حساسيت،‌ بهره و دقت اين حسگرها نياز به كشف مواد و ابزارهاي جديد دارد. با آغاز عصر نانوفناوري، حسگرها نيز تغييرات شگرفي خواهند داشت. يكي از نامزدهاي ساخت حسگرها، نانولوله‌ها خواهند بود. با نانولوله‌ها مي‌توان،‌ هم حسگر شيميايي و هم حسگر مكانيكي ساخت. به خاطر كوچك و نانومتر بودن ابعاد اين حسگرها، دقت و واكنش آن ها بسيار زياد خواهد بود، به گونه‌اي كه حتي به چند اتم از يك گاز نيز واكنش نشان خواهند داد.تحقيقات نشان مي‌دهد كه نانولوله‌ها به نوع گازي كه جذب آن ها مي‌شود حساس مي باشند؛ همچنين ميدان الكتريكي خارجي،‌ قدرت تغيير دادن ساختارهاي گروهي از نانولوله‌ها را دارد؛ و نيزمعلوم شده است كه نانولوله‌هاي كربني به تغيير شكل مكانيكي از قبيل كشش حساس هستند. گاف انرژي نانولوله‌هاي كربني به طور چشمگيري در پاسخ به اين تغيير شكل‌ها مي‌تواند تغيير كند. همچنين مي‌توان با استفاده از مواد واسط، مانند پليمرها، در فاصله ميان نانولوله‌هاي كربني و سيستم، نانولوله‌هاي كربني را براي ساخت زيست حسگرها نيز توسعه داد. تحقيق در زمينه كاربرد نانولوله‌ها در حسگرها در حال توسعه و پيشرفت است و مطمئناً در آينده‌اي نه چندان دور شاهد بكارگيري آن ها در انواع مختلف حسگرها (مكانيكي، شيميايي، تشعشي، حرارتي و ..) خواهيم بود. 

4-3) نمايشگرهاي گسيل ميداني بسياري از متخصصان بر اين باورند كه فناوري نمايشگرهاي با صفحه  تخت امروزي از نظر هزينه، كيفيت و اندازه صفحه نمايش، براي مصارف خانگي مناسب نيستند.

آن ها معتقدند كه با استفاده از نمايشگرهايي كه از نانولوله‌هاي كربني به عنوان منبع انتشار استفاده مي‌كنند، مي توانند اين مشكلات را بر طرف ‌كنند . نانولوله‌هاي كربني مي‌توانند عنوان بهترين گسيل كننده ميداني را به خود اختصاص داده و ابزارهاي الكتروني با راندمان وكارايي بالاتري توليد كنند. خصوصيات منحصر به فرد اين نانولوله‌ها، توليدكنندگان را قادر به توليد نوعي جديد از صفحه نمايش‌هاي تخت خواهد ساخت كه ضخامت آن ها به اندازه چند اينچ بوده و نسبت به فناوري‌هاي فعلي از قيمت مناسب‌تري برخوردار باشد. به علاوه كيفيت تصوير آن ها هم به مراتب بهتر خواهد بود.در پديده گسيل ميداني، الكترونها با استفاده از ولتاژ اندك از فيلم‌هاي ضخيم داراي نانولوله به سمت صفحه نمايش پرتاب شده و باعث روشن شدن آن مي‌شوند. هر نقطه از اين فيلم، يك پرتاب كننده الكترون (تفنگ الكتروني) كوچك است كه تصوير را روي صفحه نمايش ايجاد مي‌كند. ولتاژ لازم براي نمايشگر گسيل ميداني از طريق صفحه نمايش صاف متكي بر نانولوله‌ نسبت به آنچه به صورت سنتي در روش اشعه كاتدي استفاده مي‌شد، كمتر مي‌باشد و اين نانولوله‌ها با ولتاژ كمتر، نور بيشتري توليد مي‌كنند. 

 4-4) حافظه‌هاي نانولوله‌اي به دليل كوچكي بسيار زياد نانولوله‌هاي كربني ‌(كه در حد مولكولي است)، اگر هر نانولوله‌ بتواند تنها يك بيت اطلاعات در خود جاي دهد، حافظه‌هايي كه از اين نانولوله‌ها ساخته مي‌شوند مي‌توانند مقادير بسيار زيادي اطلاعات را در خود ذخيره نمايند.

 با در نظر داشتن اين مطلب، بسياري از محققان در حال كار بر روي ساخت حافظه‌هاي نانولوله‌اي مي‌باشند؛ بنابراين رؤياي ساخت رايانه‌هاي با سرعت بالا عملي خواهد شد. 

 4-5) استحكام‌دهي كامپوزيت‌هاتوزيع يكنواخت نانولوله‌ها در زمينه كامپوزيت و بهبود چسبندگي نانولوله‌ با زمينه در فرآوري اين نانوكامپوزيت‌ها از موضوعات بسيار مهم است.

شيوه توزيع نانولوله‌ها در زمينه پليمري از پارامترهاي مهم در استحكام‌دهي به كامپوزيت مي‌باشد. آنچه از تحقيقات بر مي‌آيد اين است كه استفاده از خواص عالي نانولوله‌ها در نانوكامپوزيت‌ها وابسته به استحكام پيوند فصل مشترك نانولوله و زمينه مي‌باشد. نكته ديگر آنكه خواص غير همسانگردي نانولوله‌ها باعث مي‌شود كه در كسر حجمي كمي از نانولوله‌ها رفتار جالبي در اين نانوكامپوزيت‌ها پيدا شود.از كاربردهاي ديگر نانو لوله ها مي توان به امكان ذخيره هيدروژن در پيل‌هاي سوختي، افزايش ظرفيت باتري‌ها و پيل‌هاي سوختي، افزايش راندمان پيل‌هاي خورشيدي، جليقه‌هاي ضدگلوله سبك و مستحكم، كابل‌هاي ابررسانا يا رساناي سبك، رنگ‌هاي رسانا،‌ روكش‌‌هاي كامپوزيتي ضد رادار، حصار حفاظتي الكترومغناطيسي در تجهيزات الكترونيكي، پليمرهاي رسانا، فيبرهاي بسيار مقاوم، پارچه هاي با قابليت ذخيره انرژي الكتريكي جهت راه اندازي ادوات الكتريكي، ماهيچه‌هاي مصنوعي با قدرت توليد نيروي 100 مرتبه بيشتر از ماهيچه‌هاي طبيعي، صنايع نساجي، افزايش كارايي سراميك‌ها، مواد پلاستيكي مستحكم، تشخيص گلوكز، محلولي براي اتصال دروني تراشه‌هاي بسيار سريع، مدارهاي منطقي و پردازنده‌هاي فوق سريع، كمك به درمان آسيب‌ديدگي مغز، دارورساني به سلول‌هاي آسيب ديده، از بين بردن تومورهاي سرطاني، تجزيه هيدروژن، ژن‌درماني، تصويربرداري، SPM، FEM، محافظ EMT، حسگرهاي شيميايي ، SET و LED، پيل‌هاي خورشيدي و نهايتاً LSI اشاره كرد. البته در چند مورد اخير بيشتر از نوع تك جداره آن استفاده مي‌شود. لذا اين فناوري با اين گستره كاربردها مي‌تواند در آينده‌اي نه چندان دور بازار بزرگي را به خود اختصاص داده و زندگي بشر را تحت تأثير خود قرار دهد.در پايان در پاسخ به اين سؤال كه چرا دانشمندان به فناوري نانو روي آورده ومي‌خواهند بر تمام مشكلات جابه‌جايي اتم فائق آيند مي‌توان گفت که تغييرات در مقياس نانومتري بر خواص موج گونه الكترون‌هاي درون مواد اثر مي‌گذارد لذا با جابه جا كردن اتم‌ها در اين مقياس مي‌توان خواص اصلي مواد (به عنوان مثال دماي ذوب، اثرات مغناطيسي، ظرفيت بار) را بدون تغيير كلي تركيب شيميايي مواد دگرگون ساخت. بنابر اين پيش‌بيني رفتار و خواص در محدوده‌اي از ابعاد براي نانوتكنولوژيست‌ها حياتي است.جمع بندي  

همانطور كه اشاره شد بعد از ساخت اولين نانولوله ، دانشمندان بر روي روش‌هاي سنتز اين نانولوله فعاليت زيادي انجام داده و توانستند به روش‌هاي مختلفي كه بعضي از مهمترين آن ها در بالا اشاره شد دست يابند و سپس سعي كردند با ارائه روش‌هاي متنوع بر مشكلات موجود نيز فائق بيايند كه بعضي از مشكلات تا حدي مرتفع و بعضي نيز همچنان پابرجاست. با اين وجود امروزه سنتز نانولوله‌ها يك مسأله كاملاً حل شده است لذا كمتر محققي به دنبال سنتز نانولوله با روش‌هاي خاص مي‌باشد. مي‌توان گفت امروزه بعد از گذر از مرحله سنتز به مرحله تجاري‌سازي نانولوله‌ها رسيده‌ايم، مرحله‌اي كه مي‌تواند توان رقابتي بالاي شركت‌ها را نمايان سازد.

 بعضي اوقات تجارت به جهان دارويني شبيه مي‌شود، جهاني كه شركت‌ها براي تسلط بر يكديگر در آن با هم به رقابت مي‌پردازند. در اين فرايند شركت‌هاي ضعيف‌تر مجبور به ترك صحنه سرمايه‌گذاري تجاري مي‌شوند. به نظر مي‌رسد اين ماجرا در مورد يكي از شاخه‌هاي اصلي فناوري نانو يعني نانولوله‌هاي كربني نيز صادق مي باشد.

شركت‌هايي از سراسر جهان،‌ از جزيره كوچك قبرس گرفته تا جمهوري خلق چين، ادعاي ريسك و سرمايه‌گذاري بر روي نانولوله‌هاي كربني را دارند. محصولاتي كه از فولاد سخت‌تر، از آلومينيوم سبك‌تر و از مس ضريب هدايت بيشتري داشته و نيمه‌هادي خوبي نيز هستند. توليد كنندگان در حال سرمايه‌گذاري جهت پيشبرد اين بخش و كاهش قيمت‌هاي اين فرآورده هستند. اما در واقع بقاي اين شركت‌ها وابسته به نوع نانولوله‌هايي است كه ارائه مي دهند، چه از لحاظ كيفي و چه از لحاظ ثبت اختراعات در اين زمينه.

درست است كه هنوز سوددهي اقتصادي نانولوله‌ها كاملاً روشن نيست، اما دانشمندان معتقدند چيزي قوي‌تر از فولاد به خوبي مي‌تواند جاي خود را در بازار باز كند. لذا در آينده نه چندان دور شركت‌هايي كه از نانولوله‌ جهت بهتر كردن كيفيت محصولات خود استفاده مي‌كنند بازار آينده را در اختيار خواهند گرفت.

نانولوله هاي كربني در سال ۱۹۹۱ توسط يك متخصص ميكروسكوپ الكتروني به نام سوميو ايجيما در پي مطالعه مواد حاصل از تبخير كربن تحت جريان الكتريكي، كشف شدند. 

محققان گروه فيزيك دانشگاه شهيد چمران اهواز موفق به توليد نانو لوله هاي كربني و كربن 60 به روش قوس الكتريكي شدند.

كاظمي‌نژاد استاديار گروه فيزيك دانشگاه شهيد چمران اهواز با اشاره به روند توليد كربن 60 و نانو لوله هاي كربني گفت : پس از ساخت رئاكتور توانستيم با كمك قوس الكتريكي در يك اتمسفر خاص , جريان هايي را از الكترودهاي گرافيتي بگذرانيم و بدين روش كربن 60 و نانو لوله هاي كربني را توليد كنيم .

 وي افزود : نانو لوله‌هاي كربني در انتقال دارو بسيار مفيد است به گونه اي كه با تزريق دارو و قراردادن آن در قرنيه چشم مي‌توان بصورت تدريجي دارو را در موضع بيمار تخليه كرد.اين استاديار در ادامه گفت : نانو لوله هاي كربني 60 برابر فولا‌د استحكام دارد كه بدين ترتيب دراينده جايگزين مناسبي براي فولا‌د در مهندسي عمران خواهد بود.

وي افزود : همچنين ذخيره سازي هيدروژن براي توليد باطري هاي با طول عمر بالا از ديگر كاربردهاي مهم نانو لوله هاي كربني است. 

 منبع
شنبه بیست و یکم اردیبهشت 1387
نانوتیوپ ها ...  
یکشنبه هشتم اردیبهشت 1387
تولید نخستین ترانزیستورها در مقیاس نانو ...  
ایرنا - محققان شرکت هیولت پاکارد موفق شده‌اند فناوری تازه‌ای را ابداع کنند که می‌تواند جانشین فناوری کنونی تراشه‌های سیلیکنی شود که در سال‌های پایانی عمر خود قرار دارند.

ترانزیستورها، کلیدهای الکترونیک هستند که در قلب دستگاه‌های الکترونیک از جمله کامپیوترها جای دارند.
هراندازه سرعت و طول عمر این دستگاه‌ها بیشتر باشد و شمار زیادتری از آنها را بتوان در محدوده کوچک‌تری جای داد امکان بیشتری برای بالا بردن توان محاسباتی رایانه بوجود می‌آید.

ترانزیستورهایی که در حال حاضر مورد استفاده قرار دارند با استفاده از فناوری حک کردن مدارهای یکپارچه حاوی هزاران هزار ترانزیستور بر روی تراشه‌های سیلیکنی ساخته می‌شوند.
عمل حک کردن که نوعی لیتوگرافی است با کمک پرتوهای قوی لیزر به انجام می رسد، اما جا دادن شمار هر چه بیشتری از این ترانزیستورها بر روی تراشه‌ها کاری نیست که بتوان آن را تا بی‌نهایت ادامه داد.

از یک سو متمرکز کردن پرتوهای پرقدرت لیزر از نظر تکنیکی دشوار است و از سوی دیگر زمانی که فاصله مدارهای برروی تراشه‌ها از حد معینی کمتر شود، الکترون‌ها که می‌باید به وسیله کلیدهای ترانزیستوری کنترل شوند، به صورت خودبخودی و طی فرایندی که به نقب زدن کوانتومی شهرت دارد، از درون سدهای پتانسیل الکتریکی که برای جلوگیری از حرکت ناخواسته آنها تعبیه شده گذر می‌کنند و فعالییت تراشه را مختل می‌سازند.
بر اساس پیش‌بینی‌های کنونی در پایان دهه جاری، تراشه‌های سیلیکنی به حد نهایی ظرفیت کوچک شوندگی خود می‌رسند و به این ترتیب دیگر نمی‌توان با استفاده از این نوع تراشه‌ها بر سرعت و قدرت کامپیوترها افزود.

شرکت‌های سازنده کامپیوتر به منظور مقابله با این محدودیت تلاش‌های تحقیقاتی گسترده‌ای را آغاز کرده‌اند. از جمله این شرکت‌ها، آی‌بی‌ام است که در اواخر سال ‪۲۰۰۳‬اعلام کرد که در حال تکمیل روشی برای ساختن تراشه های الکترونیک است که در آن خود مولکول‌های پلیمری با استفاده از یک روش خود-مونتاژی مدارهای الکتروینک مورد نظر را حاوی انواع ترانزیستورها و در شمار فراوان، در مقیاس مولکولی تولید می‌کنند.
این شیوه هرچند می‌تواند تراز ساخت کامپیوترهای پرقدرت را تا حد چشمگیری ارتقا بخشد اما به واسطه دشواری کنترل عمل پلیمرها در سطح مولکولی نمی‌توان انتظار داشت که در آینده نزدیک این نوع فناوری برای بهره‌برداری آماده شود.

فناوری ابداعی شرکت هیولت پاکارد در مقایسه با فناوری مولکولی قابل دسترس‌تر است و نخستین آزمایش‌هایی که با استفاده از آن صورت گرفته با موفقیت همراه بوده است.
مهندسان هیولت پاکارد برای ترانزیستورهای خود که در مقیاس نانو (یک میلیاردیم متر) ساخته می‌شود نام "چفت یا کلون افقی "‪crossbar latches‬را برگزیده‌اند.

این تراشه جدید از ترکیبی از سیم‌های پلاتینیوم که بطور افقی و عمودی در یک محدوده کوچک بر رویهم قرار می‌گیرند و چهارخانه‌های مینیاتوری بوجود می آورند به همراه مولکول‌های اسید استریک که بر روی محل تقاطع هر دو سیم جای می‌گیرد، بوجود آمده‌اند.
محل تقاطع هر دو سیم به صورت یک ترانزیستور عمل می‌کند. اندازه این نوع ترانزیستورها در مقایسه با کوچک‌ترین ترانزیستورهای سیلیکنی به مراتب کوچک‌تر است.

ریزترین ترانزیستور سیلیکنی ‪ ۹۰‬نانو متر طول دارد در حالیکه طول این ترانزیستورها از ‪ ۲‬تا ‪۳‬نانو متر تجاوز نمی‌کند.
به این ترتیب می‌توان با شمار بیشتری از ترانزیستورها در محدوده‌ای کم‌حجم‌تر و با مصرف توان و انرژی کمتر کانپیوترهایی پرقدرت‌تر تولید کرد.

اما محققان هیولت پاکارد تاکید دارند که فناوری ابداعی آنها در آغاز راه است و تکمیل آن چند سالی به طول می‌انجامد. عمر این ترانزیستورهای جدید و سرعت عمل آنها در مقایسه با تزانزیستورهای سیلیکنی کنونی بسیار کمتر است.
ترانزیستورهای جدید فعلا می‌توانند تنها تا ‪ ۱۰۰‬نوبت عمل سوئیچینگ را انجام دهند و سرعتشان چند هزار مرتبه کمتر از سرعت ترانزیستورهای سیلیکنی است.

با این حال به اعتقاد متخصصان شرکت هیولت پاکارد، فناوری تازه تا سال ‪۲۰۱۲‬می تواند جایگزین فناوری کنونی شود و در آن هنگام درست به همان شکل که زمانی ترانزیستورها لامپ‌های کاتدی را کنار گذاشتند و جای آنها را گرفتند، سیمهای نانو نیز ترانزیستورها را کنار می‌گذارند و جایگزین آنها می‌گردند
منبع

یکشنبه هشتم اردیبهشت 1387
مقالات لاتین pdf نانو ترانزیستورها.دانلود ...  
یکشنبه هشتم اردیبهشت 1387
ترانزیستورهای نسل جدید ...  
  این ترانزیستورهای جدید بجای بهره‌گیری از سیلیکون، با ایندیوم فسفاید (indium phosphide) و ایندیوم گالیوم آرسناید ( indium gallium arsenide) ساخته می‌شوند. این مواد با هم ترکیب می‌شوند تا یک ماده سه لایه ایجاد شود که پایه ترانزیستورهای دوقطبی (bipolar) را تشکیل می‌دهد. هر ترانزیستور از سه قسمت ساخته می‌شود که عبارتند از امیتر، بیس و کلکتور. تیم طراح می‌گوید که ساختار کلکتور را با افزودن ایندیوم، کریستاله می‌کنند تا هتروجانکشن سودومورفیک (pseudomorphic heterojunction) درست شود. این پیوند اجازه می‌دهد تا الکترونها آزادانه تر بین دو لایه حرکت کنند که در نتیجه این عمل، سرعت بالا حاصل می‌شود. میلتون فینچ پروفسور مهندسی برق و کامپیوتر هولونیاک در ایلینویز که این مطالب را عنوان نمود اضافه کرد که هنوز چند سالی با ارائه نمونه عملی این ترانزیستورها به بازار فاصله داریم زیرا قیمتی که برای این نمونه تنظیم شده است 100 برابر ترانزیستور ساخته شده از سیلیکون است هرچند که انتظار می‌رود با تولید انبوه، این هزینه تا 90 درصد کاهش یابد. یکی از نقاط ضعف این مواد جدید آنستکه بشدت نیرو مصرف می‌کنند که باعث می‌شود تا نتوان آنها را در میکروپروسسورها کنار هم قرار داد.

در سال 1971 میلادی اولین پردازنده شرکت اینتل به نام 4004 تعداد 2300 ترانزیستور داشت و30 سال بعد از آن پردازنده پنتیوم 4 تعداد 42 میلیون ترانزیستور داشت در طی این مدت استراتژی اصلی سازندگان تراشه ها برای ساختن پردازنده های سریعتر کوچکتر کردن ترانزیستورها بوده برای فعال کردن آنها در انجام اعمال تکراری و همچنین فعال کردن مدارهای بسیار پیچیده که درون یک طاس از جنس سیلیکون جاگذاری شده اند به هر حال نظر به اینکه نیم رساناها حتی بیشتر از پیچیده بودن مرحله ی مهمی را در اندازه و حجم و کارایی ترانزیستورها می گذارنند مانند مصرف برق و گرما که دارد پدیدار می شود که به چند عامل محدود می شوند که به سرعت در طراحی و ساخت تراشه ها بستگی دارد.کاربرد طرحهای موجود برای پردازنده های آینده به خاطر تراوش کنونی در ساختمان ترانزیستور غیر قابل انجام است که نتایجی را از قبیل مصرف زیاد برق و تولید زیاد گرما در برداشته است.
در اواخر سال 2002 شرکت اینتل از نوآوری و پیشرفتهای محققانش در زمینه ساختمان ترانزیستورها و نمایاندن مواد جدید که به عنوان یک گام مهم در تلاش برای حفظ موازین قانون میکروچیپ و بهبود بخشیدن سرعت و راندومان قدرت و کاهش گرمای تولید شده در پردازنده خبرداد.این ساختمان جدید که به عنوان یک به روز رسانی در پردازنده ها اضافه می شود به نام اینتل تراهرتز ترانزیستور می باشد و این به خاطر توانایی در خاموش و روشن کردن ترانزیستورها در مدت زمانی به اندازه یک ترلیونم از ثانیه است شرکت اینتل امیدوار است که سرانجام تراشه های جدیدی بسازد که تعداد ترانزیستور های آن بیشتر از یک بیلیون است باسرعتی ده برابر بیشتر و با تراکم ترانزیستوری،بیست و پنج برابر تمام تراشه های پیشرفته موجود در سال 2000.انجام چنین کاری این معنی را به عناصر تراشه می بخشد که آنها قادر به اندازه گیری مقادیری بسیار کوچکتر از تار موی انسان به اندازه 20 نانو متر هستند.
ترانزیستور اختراع ساده ای است که در یک ناحیه ی سیلیکونی ساخته شده است که آن فقط میتواند به صورت الکترونیکی یک تبدیل بین خاموش و روشن انجام دهد.مطابق آیین و برنامه ترانزیستورها آنها سه پایانه با اسامی Gate و Source و Drain دارند.Source و Drain نوع دیگری از سیلیکون اساسی و Gate ماده به نام پلیسیلیکون است.پایین Gate لایه ی نازکی به نام ماده عایق برق که از دی اکسید سیلیکون ساخته شده وجود دارد وقتی که ولتاژی به ترانزیستور داده می شود Gate باز یا روشن می شود و جریان برق از Source به Drain جاری می شود وقتی که Gate بسته یا خاموش است هیچ جریان برقی وجود ندارد.تکنولوژی اینتل تراهرتز در ترانزیستورها دو تغییر عمده را شامل می شود اولی این است که فاصله ی بین Source و Drain زیاد تر می شود و زیربنای این ترانزیستور ها به گونه ای است که فقط یک جریان الکتریسیته می تواند از آن عبور کند.دومی این است که لایه ی عایق سیلیکون که اندازه ی آن بسیار نازک است زیر Source و Drain جاسازی می شود. این روش با روش موسوم برای ایزوله کردن سیلیکون در بقیه ی اختراعات متفاوت است.وقتی ترانزیستور روشن است ماکسیسم رانشی است که می تواند داشته باشد که این در سرعت تبدیل حالت خاموش و روشن کردن ترانزیستور بسیار مفید است.وقتی که Gate خاموش است لایه ی اکسید راه جریانهای ناخواسته ای که در گردش می افتد را مسدود می کند.سومی این است که قطعه شیمیایی لایه ی اکسیدی Gate ی ترانزیستور را با Source و Drain مرتبط می سازد که باعث می شود یک ماده عایق جدید ایجاد شود که این روش توسط تکنولوژی به نام لایه ی اتمی رشد یافته است که این لایه هایی هستند که با کلفتی یک مولکول رشد یافته اند.قطعه شیمییایی خیلی دقیق لایه ی اکسیدی Gate تابه حال توانسته از جنس آلومینیوم و تیتانیوم از بین بقیه قطعات باشد.
این سه روش بهبود سازی مستقل از هم هستند اما کار آنها در آینده یک هدف را دنبال خواهد کرد که استفاده ی موثرتری از جریان برق توسط ترانزیستورهاست:
1- ضخیمتر کردن منطقه ی مورد استفاده برای Source و Drain و تغییر قطعه ی شیمییایی Gate اکسیدی که همه ی اینها به تراوش بدنه ی اصلی Gate کمک می کند زیرا جریان میتواند به خارج از Gate تراوش کند.ترانزیستور های کوچکتر راه فرار بیشتری می گیرند به خاطر همین طراحان مجبورند جریان الکتریسیته ی بیشتری برای پمپ کردن در نظر بگیرند که باعث تولید گرمای بیشتری می شود. شرکت اینتل ادعا می کند تراوش Gate در ماده جدید نسبت به دی اکسید سیلیکون 10000 برابرکاهش می یابد.
2- افزایش لایه ی عایق کننده سیلیکون ((SOI باعث کاهش مقاومت در برابر جریان گردشی بین Source و Drain می شود.درنهایت این کاهش مقاومت به طراحان این اجازه را خواهد داد که مصرف برق را کاهش دهند یا بازده و کارایی را نسبت به انرژی داده شده بهبود بخشند.
3- مزیتهای دیگری هم وجود دارد که آنها را نشان می دهیم.برای مثال: گردش آزادانه ذرات آلفا که از تماس با یک ترانزیستور در تراشه ها می تواند به طور ناگهانی باعث تغییر حالت آن یا بروز خطا شود که در آینده این ذرات بوسیله ی لایه ی عایق کننده (SOI) جذب می شوند.
پردازنده های کنونی پنتیوم4 با توان 45 وات نار می کنند.خوب است بدانیم که ترانزیستورهای تراهرتز درپردازنده های آینده قادر هستند مراحل اتلاف توان را حفظ کنند و قدرت را در فاصله ی 100 وات نگهدارند.
شرکت اینتل پیشنهاد کرده که می تواند با بکارگرفتن قسمتهایی از تکنولوژی تراهرتز در تولیدات آتی خود مثلا تراشه های 0.09 میکرونی در سال 2003 یا زودتر استفاده کند.در نهایت تغییرات شیمییایی و معماری مجزا در تکنولوژی جدید می تواند در نیمه دوم قرن جاری به اوج خود برسد.شرکت اینتل در سال 2007 تراشه هایی خواهد ساخت که با یک بیلیون ترانزیستور کار می کند اما با میزان مصرف برق پردازنده های پنتیوم 4 که در قرن حاضر مصرف می شوند.با چنین سرعت پیشرفت،از ترانزیستورهای جدید انتظار می رود پردازنده هایی با سرعت 10 گیگا هرتز در سال 2005 و تراشه هایی با 20 گیگاهرتز سرعت در پایان دهه تولید شود
سریع‌ترین ترانزیستور جهان توسط دكتر " فرشید رییسی " عضو هیات علمی دانشكده مهندسی برق دانشگاه صنعتی خواجه نصیرالدین طوسی طراحی و ساخته شد.در طراحی این ترانزیستور به جای الكترون از سالیتان (بسته‌های امواج الكترو مغناطیسی ) كه با سرعت نور حركت می‌كند،استفاده شده است.رییسی درباره مزیت این طرح گفت:ترانزیستور سالیتانی می‌تواند صدها برابر سریع تر از ترانزیستورهای معمولی كه از جنس نیمه هادی هستند، عمل كند.وی افزود:این ترانزیستور در ابعاد ‪ ۸دهم میلیمتر ساخته شده است و سرعتی حدود ‪ ۸گیگاهرتز دارد كه در مقایسه با ترانزیستورهای معمولی (حدود ‪ ۲/۵گیگا هرتز) سه برابر بیشتر است و هر چه ابعاد آن كوچكتر باشد،سرعت ترانزیستور افزایش می‌یابد.وی با اشاره به اینكه قطعات مورد نیاز این ترانزیستور از خارج كشور تهیه می‌شود،گفت:تولید این ترانزیستور به آزمایشگاه‌های ساخت قطعات نیمه هادی نیازمند است كه متاسفانه در كشور وجود ندارد.وی افزود:در حالی كه هزینه تهیه یك آزمایشگاه ساخت ترانزیستور سالیتانی نسبت به هزینه آزمایشگاه‌های ساخت ترانزیستورهای كنونی بسیار كمتراست.دكتر رییسی خاطر نشان كرد:در صورت تجهیز آزمایشگاه قطعات نیمه هادی در كشور ،با تهیه ترانزیستورهای سالیتانی در ابعاد صد نانومتر ،می توان سرعت فركانسی آن را به حدود ‪ ۲۰۰تا‪ ۳۰۰گیگاهرتز رساند تا در مواردی نظیر ابررایانه‌ها وفعالیت‌های دفاعی كه سرعت ترانزیستور اهمیت دارد به كار رود.وی افزود:ترانزیستور سالیتانی علاوه بر سرعت سه برابر بیشتر نمونه اولیه آن نسبت به سریع‌ترین ترانزیستورهای موجود در بازار،از لحاظ هزینه تولید از ترانزیستورهای نیمه هادی با كاربردی در ‪ CPUهابسیار ارزانتر است.مقاله مربوط به طرح ابتكاری دكتر "فرشید رییسی" كه در مجله معتبر بین‌المللی ‪ Applied Physics Lettersآمریكا ارایه شده،بازتاب وسیعی در نشریات و رسانه‌های علمی فیزیك جهان داشته است.amirelectronic20.blogfa.com
یکشنبه هشتم اردیبهشت 1387
با استفاده از يك ماده جديد كوچكترين ترانزيستور جهان ساخته شد ...  
تهران ، خبرگزاري جمهوري اسلامي ‪۳۱/۰۱/۸۷‬

علمي
دانشمندان با استفاده از نازك‌ترين ماده جهان، كوچكترين ترانزيستور دنيا را با يك اتم ضخامت و ‪ ۱۰‬اتم پهنا، ساختند.

به گزارش ساينس ديلي، دكتر كوشتيا نووسلوف و پروفسور آندري گيم از دانشكده فيزيك و ستاره شناسي داتشگاه منچستر نشان دادند مي‌توان اين ماده جديد را كه گرافن نام دارد براي ساخت مدارهاي الكترونيكي كوچكي برش داد و ترانزيستورهايي ساخت كه ابعادي بزرگتر از يك مولكول ندارند.

محققان مي‌گويند هرچه اندازه يك ترانزيستور كوچكتر باشد عملكرد آنها بهتر است.

در دهه‌هاي اخير توليدكنندگان، اجزاي بيشتر و بيشتري را به مدارهاي مجتمع افزوده اند. در نتيجه تعداد ترانزيستورها و توان اين مدارها تقريبا هر دو سال، دو برابر شده است كه اين روند به عنوان قانون مور شناخته شده است.

بر اساس نقشه راه صنعت نيمه هادي، اكنون سرعت افزايش حجم بطور قابل توجهي در حال كاهش است و متخصصان الكترونيك براي كوچك‌سازي بيشتر وسايل الكترونيكي بايد مهمترين چالش خود طي ‪ ۱۰‬تا ‪ ۲۰‬سال آينده روبرو شوند.

ثبات ناكافي مواد هنگامي كه ابعاد آنها به كمتر از ‪ ۱۰‬نانومتر برسد مشكل اصلي است. در اين مقايس فضايي تمام نيمه هادي‌ها از جمله سيليكون اكسيده و تجزيه مي‌شوند و بطور غير قابل كنترلي مانند قطرات آب بر روي يك سطح داغ، در امتداد سطوح به حركت درمي آيند.

گيم و همكارانش چهار سال پيش گرافن را كشف كردند. گرافن نخستين ماده به ضخامت تك اتم است كه مي‌توان آن را به صورت سطحي از اتمهاي تخليه شده از گرافيت تلقي كرد. گرافن در علوم مواد و فيزيك ، به سرعت به مهمترين موضوع تبديل شده است.

اكنون تيم تحقيقاتي دانشگاه منچستر امكان ساخت ترانزيستورهاي در مقياس نانويي با استفاده از يك كريستال گرافن را به اثبات رسانده اند.

گرافن برخلاف تمامي مواد شناخته شده حتي وقتي كه ابزارهاي يك نانو متر ي از آن ساخته مي‌شود بسيار باثبات و هادي باقي مي‌ماند.

ترانزيستورهاي گرافني در اندازه‌هاي كمتر از ‪ ۱۰‬نانومتر مزايا و عملكرد مناسبي از خود نشان مي‌دهند.

نووسلوف مي‌گويد،پيش از اين محققان سعي كرده بودند از مولكول‌هاي بزرگ به عنوان ترانزيستورهاي واحد براي ساخت نوع جديدي مدارهاي الكترونيكي استفاده كنند. اين كار مانند بهره‌گيري از شيمي در مهندسي رايانه است، گيم افزود هنوز براي وعده ساخت ابررايانه‌هاي گرافني خيلي زود است. ما دراين كار تحقيقاتي براي ساخت چنين ترانزيستورهاي كوچكي به شانس تكيه كرديم.

وي اظهار داشت متاسفانه هيچ فناوري وجود ندارد كه بتوان با استفاده از آن مواد را با اندازه نانومتري دقيقي برش داد. اما اين دقيقا همان چالشي است كه تمام متخصصان الكترونيك بايد با آن روبه رو شوند.

اين دانشمند تاكيد كرد دستكم اكنون ماده‌اي داريم كه مي‌توان با استفاده از آن با اين چالش مواجه شد.

باب وسترولت استاد دانشگاه هاروارد گفت گرافن ماده جديد جالبي با ويژگي هاي غير عادي است كه براي نانوالكترونيك نويد بخش محسوب مي‌شود.

چهارشنبه چهارم اردیبهشت 1387
...  
شنبه سی و یکم فروردین 1387
نانو الکترونیک چیست؟ ...  
 

نانو الكترو نيك

پستتصوير
آوري نانو نقطه همگرايي علوم مختلف در آينده است. در اين ميان يکي از پرکاربردترين شاخه ها نانو الکترونيک مي باشد. امروزه افزایش ظرفیت ذخیره داده، افزایش سرعت انتقال آن و کوچک کردن هر چه بيشتر وسائل الکترونيکي و به خصوص ترانزيستورها داراي اهميت بسياري است زيرا کوچک تر شدن ابعاد وسائل الکترونيکي علاوه بر افزايش سرعت پردازش، توان مصرفي را نيز کاهش مي دهد و نانو الکترونيک مي تواند در رسيدن به ابعاد هر چه کوچک تر راهگشا باشد. براي آشنايي بيشتر با اين فن آوري و درک عميق تر پديده هاي گوناگوني که در ابعاد نانو متر روي مي دهد و در نتيجه تحليل دقيق نتايج و اصلاح اصولي روش هاي آزمايش، بايد علوم پايه اي نظير فيزيک کوانتوم و مکانيک کوانتومي و فيزيک حالت جامد مورد مطالعه قرار بگيرند.
اهداف:
در دهه‌های اخیر شاهد پیشرفت‌های زیادی در زمینه افزایش قابلیت ذخیره اطلاعات روی حافظه‌ها و همچنین کاهش اندازه آن‌ها بوده‌ایم که نتیجه آن دو برابر شدن سرعت پردازش در عرض هر 18 ماه بوده است و این، انتظار تحولی عظیم در صنعت میکروالکترونیک را طی 15 سال آینده از نظر بنیادی و اقتصادی نوید می‌دهد. اکنون نیز تحقیقات ادامه داشته و هدف از آن تولید خواص نمونه و شکل ظاهری جدید و در نتیجه خلق نانوالکترونیک جدید است.

کاربرد نانوالکترونیک در صنعت:

با استفاده از این فناوری می‌توان ظرفیت ذخیره‌سازی اطلاعات را در حد ۱۰۰۰ برابر یا بیشتر افزایش داد که این نهایتاً به ساخت ابزارهای ابرمحاسباتی به کوچکی یک ساعت مچی منتهی می‌شود. ظرفیت نهایی ذخیره اطلاعات به حدود یک ترابیت در هر اینچ مربع رسده، و این امر موجب ذخیره‌ سازی ۵۰ عدد DVD یا بیشتر در یک هارد دیسک با ابعاد یک کارت اعتباری می‌شود. ساخت تراشه‌ها در اندازه‌های فوق‌العاده کوچک به‌عنوان مثال در اندازه‌های ۳۲ تا ۹۰ نانومتر، تولید دیسک‌های نوری ۱۰۰ گیگابایتی در اندازه‌های کوچک نیز از دیگر محصولات آن می‌باشد.

نمونه هايي از کاربرد فن آوري نانو در الکترونيک:

1) کربن نانو تيوب ها (carbon nanotubes)

نانو تيوب ها داراي فرم لوله اي با ساختار شش ضلعي هستند. نانو تيوب ها را مي توان صفحات گرافيتي فرض کرد که لوله شده اند. بر اساس محور چرخش صفحات نانو تيوب ها مي توانند رسانا يا نيمه رسانا باشند
تصوير
به علت اينکه کربن با سه پيوند همچنان داراي يک اوربيتال خالي p مي باشد ، حرکت موجي الکترون ها به راحتي در سطح بيروني اين لوله ها صورت مي گيرد. اين ساختار کربني علاوه بر رسانايي بالا داراي استحکام مکانيکي بسيار خوبي نيز است. البته در کنار اين مزايا مشکلاتي نيز وجود دارد. اغلب فرآيند هاي ساخت نانو تيوب ها به گو نه اي مي باشند که امکان کنترل و نظارت کامل در طول فرآيند وجود ندارد به عنوان مثال تعيين قطر دقيق و يکسان براي لوله هاي کشت شده در يک محيط، کنترل توليد نانو لوله هاي تک ديواره و يا چند لايه و يا ساخت نانو لوله هاي مستقيم و بدون خم شدگي با طول زياد از مسائلي است که هنوز در فرآيند بهبود کيفيت توليد نياز به مطالعه و تحقيقات بيشتري دارد. همچنين به علت پديده تونل زني الکترون که يک پديده کوانتومي است امکان افزايش نشتي جريان و در نتيجه افزايش تلفات وجود دارد که بررسي روش هاي کاهش احتمال تونل زني از جمله کارهايي است که مي توان انجام داد. از کربن نانو تيوب ها به دليل رسانايي بالا و مقاومت کم در دماي محيط در ساخت کانال هدايت ترانزيستورها ، نوک ميکروسکوپ هاي عکسبرداري در ابعاد نانو استفاده مي شود.

2 ) نانو ترانزيستورها (nanotransistors)

طبق قانون مور( MOORE Law) تعداد ترانزيستورها در واحد سطح تراشه هاي الکترونيکي در هر بازه 10 تا 18 ماهه دو برابر مي شود. نام فن آوري رايج امروز در ساخت ترانزيستورها، MOSFET مي باشد که بر پايه استفاده از سيليکون است. کوچکتر شدن ابعاد ترانزيستورها در MOSFET داراي مشکلاتي است که از جمله آن نشتي هاي جريان متفاوتي است که ايجاد مي شود. يکي از روش هاي حل اين مشکل ساخت تراتزيستورها با استفاده از نانو سختارها و به خصوص نانو تيوب ها مي باشد.

3 ) محاسبه گر ها در مقیاس نانو ( nanocomputers)

امروزه در زمينه هاي مختلف از جمله فن آوري نانو پيوند ميان رشته هاي مختلف علوم امري انکار ناپذير است. از جمله نتايج اين همکاري طراحي نانو محاسبه‌گرها مي باشد. هيدرو کربن هاي آروماتيک از ريشه بنزن به علت وجود اوربيتال هاي p و ابر الکتروني در بالا و پايين آنها و همچنين پديده رزونانس مي توانند محيط انتقال خوبي براي الکترون باشند و بر عکس هيدروکربن هاي زنجيري مانند نارسانا عمل مي کنند. از به هم پيوستن اين هيدروکربن ها با هم مي توان ديود، گيت هاي منطقي و مدارهاي الکترونيکي را طراحي کرد.

4 ) MRAMها ( Magnetic Random Access Memories )

فن آوري هاي روز حافظه ( RAM, Flash Memory, …) مشکلات متعددي را براي مصرف کنندگان آنها به وجود آورده است که به عنوان نمونه مي توان به سرعت پايين خواندن و نوشتن روي Flash Memories و EEPROM و يا محدوديت اقتصادي افزايش فضاي RAM اشاره کرد. MRAM يک فن آوري حافظه پايدار است که علاوه بر سرعت بالا مي تواند ظرفيت حافظه بالايي را نيز فراهم کند. اساس کار MRAM بر پايه تفاوت مقاومت الکتريکي لايه هاي نازک مواد بر اثر قطبيده شدن ذرات آنها در راستاهاي متفاوت مي باشد؛ که به مقاومت مغناطيسي موسوم است. چون سلول هاي حافظه MRAM بر پايه ترانزيستور عمل نمي کنند پس در ابعاد کوچک مشکلاتي نظير تونل زني رخ نخواهد داد و مي توان سلول هاي حافظه MRAM را تا ابعاد نانو کوچک کرد.

5 ) C60

از جمله نانو ساختارها که حتي نسبت به نانو لوله هاي کربني داراي مزاياي بيشتري نيز مي باشد C60 است. C60 از 12 پنج ضلعي و 20 شش ضلعي تشکيل شده که به شکل متقارني در کنار هم قرار گرفته اند.

تصوير
مولکول هاي C60 در محلول هاي بنزن يافت مي شوند که با عمل تبخير قابل استحصال مي باشند. انواع ترکيبات C60 با فلزات، نظير K3C60 , Cs2RbC60 ، که در آنها فلز فضاي خالي درون C60 را پر مي کند داراي خاصيت ابر رسانايي در دماهاي نسبتاً مناسب مي باشند؛ البته تحقيقات براي دستيابي به ترکيباتي با خاصيت ابررسانايي در دماهاي بالاتر همچنان ادامه دارد. کاربرد ديگر C60 استفاده از آن به عنوان گيت هاي منطقي است. با ليتوگرافي طلا روي يک سطح سيليکوني و عبور جريان از سيم هاي طلا يک صفحه مشبک ايجاد مي شودکه فاصله بين اتصالات آن در حدود نانو متر است. محلول رقيق C60 را بين اتصالات قرار مي دهند به طوري که در هر فاصله يک C60 قرار گيرد. با برقرار شدن جريان در سيم هاي طلا C60 به علت يک پديده کوانتومي شروع به نوسان مي کند و به همين علت جريان در زمان هاي معيني بر قرار مي شود از اين خاصيت مي توان در طراحي گيت هاي منطقي استفاده کرد.

کارهایی که باید در راستای پیشرفت این علم انجام شود:

نانو الکترونیک زمینه گسترده‌ای با پتانسیل ایجاد تغییرات بنیادی در علوم مختلف حتی در پزشکی است و انجام کارهای زیر برای پیشبرد آن می‌تواند مفید باشد:

1. فهم اصول انتقال در مقیاس نانو

2. گسترش فهم هرچه بهتر روش‌های خودچیدمانی(self assembly) ذرات برای انجام کارها به صورت ارزان‌تر، که این خود مستلزم حل مشکلات ارتباطی و جایگزینی در ترانزیستورهاست

3. یافتن راه‌هایی جدید برای به کار بردن علم الکترونیک و عدم تکثیر ابزار و به جای آن تحقیق راجع به انواع جدیدتر.

          منبع